Search results
Results From The WOW.Com Content Network
The values below 0 °C refer to supercooled water. Viscosity [11] 1.7921 mPa·s at 0 °C 0.5494 mPa·s at 50 °C 1.5188 mPa·s at 5 °C 0.5064 mPa·s at 55 °C 1.3077 mPa·s at 10 °C 0.4688 mPa·s at 60 °C 1.1404 mPa·s at 15 °C 0.4355 mPa·s at 65 °C 1.0050 mPa·s at 20 °C 0.4061 mPa·s at 70 °C 0.8937 mPa·s at 25 °C
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
Density (g cm-3) Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... Water: 100.00 0.512 0.00 ... [25] Tetrahydrofuran: 66.0 [26]
In spite of the fact that the decreed definition of the gram specified water at 0 °C (32 °F)—a highly reproducible temperature—the scientists chose to redefine the standard and to perform their measurements at the temperature of highest water density, which was measured at the time as 4 °C (39 °F). [126]
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Density at 20 °C relative to 20 °C water Density at 25 °C relative to 25 °C water Freezing temperature, °C 10 °C 20 °C 25 °C 30 °C 0.0: 0.0: 0.0: 0.99973:
For example, to heat water from 25 °C to steam at 250 °C at 1 atm requires 2869 kJ/kg. To heat water at 25 °C to liquid water at 250 °C at 5 MPa requires only 976 kJ/kg. It is also possible to recover much of the heat (say 75%) from superheated water, and therefore energy use for superheated water extraction is less than one sixth that ...