Search results
Results From The WOW.Com Content Network
This is also known as the nth-term test, test for divergence, or the divergence test. Ratio test. This is also known as d'Alembert's criterion.
Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
Numerous references to earlier uses of the symmetrized divergence and to other statistical distances are given in Kullback (1959, pp. 6–7, §1.3 Divergence). The asymmetric "directed divergence" has come to be known as the Kullback–Leibler divergence, while the symmetrized "divergence" is now referred to as the Jeffreys divergence.
Ball divergence is a non-parametric two-sample statistical test method in metric spaces. It measures the difference between two population probability distributions by integrating the difference over all balls in the space. [1] Therefore, its value is zero if and only if the two probability measures are the same.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
The dual divergence to a Bregman divergence is the divergence generated by the convex conjugate F * of the Bregman generator of the original divergence. For example, for the squared Euclidean distance, the generator is x 2 {\displaystyle x^{2}} , while for the relative entropy the generator is the negative entropy x log x ...
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.