Search results
Results From The WOW.Com Content Network
The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.
In other words, a very small change in stimulus causes a very large change in response, producing a sigmoidal dose-response curve. An ultrasensitive response is described by the general equation V = S n /(S n + K m), known as the Hill equation, when n, the Hill coefficient, is more than 1. The steepness of the sigmoidal curve depends on the ...
The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...
The impulse response and step response are transient responses to a specific input (an impulse and a step, respectively). In electrical engineering specifically, the transient response is the circuit’s temporary response that will die out with time. [1]
This response is quick, as it involves regulation of molecules that are already present in the cell. On the other hand, the induction or repression of the expression of genes requires the binding of transcriptional factors to the regulatory sequences of these genes.
Response to stimuli: a response can take many forms, from the contraction of a unicellular organism to external chemicals, to complex reactions involving all the senses of multicellular organisms. A response is often expressed by motion; for example, the leaves of a plant turning toward the sun (phototropism), and chemotaxis.
The impulse response function provides that factor as a function of the elapsed time since each input value occurred. In physics , wherever there is a linear system with a " superposition principle ", a convolution operation makes an appearance.
Cellular responses to mechanotransduction are variable and give rise to a variety of changes and sensations. Broader issues involved include molecular biomechanics . Single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in molecular motors have demonstrated the critical importance of molecular mechanics as a new ...