When.com Web Search

  1. Ad

    related to: induced magnetic field in wire formula

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    When the electric current in a loop of wire changes, the changing current creates a changing magnetic field. A second wire in reach of this magnetic field will experience this change in magnetic field as a change in its coupled magnetic flux, . Therefore, an electromotive force is set up in the second loop called the induced emf or transformer emf.

  3. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).

  4. Lenz's law - Wikipedia

    en.wikipedia.org/wiki/Lenz's_law

    The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8]

  5. Inductance - Wikipedia

    en.wikipedia.org/wiki/Inductance

    The magnetic field strength depends on the magnitude of the electric current, and therefore follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) in the conductors, a process known as electromagnetic induction. This induced ...

  6. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.

  7. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [2]

  8. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Given a loop of wire in a magnetic field, Faraday's law of induction states the induced electromotive force (EMF) in the wire is: = where = (,) is the magnetic flux through the loop, B is the magnetic field, Σ(t) is a surface bounded by the closed contour ∂Σ(t), at time t, dA is an infinitesimal vector area element of Σ(t) (magnitude is ...

  9. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.