Search results
Results From The WOW.Com Content Network
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
The momentum of the body is 1 kg·m·s −1. The moment of inertia is 1 kg·m 2. The angular momentum is 1 kg·m 2 ·s −1. The kinetic energy is 0.5 joule. The circumference of the orbit is 2 π (~6.283) metres. The period of the motion is 2 π seconds. The frequency is (2 π) −1 hertz.
If m is an object's mass and v is its velocity ... For example, a 1 kg model airplane, traveling due north at 1 m/s in straight and level flight, has a momentum of 1 ...
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules. For example, one would calculate the kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as
Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2, independent of its mass. With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph [4]) for a human skydiver.
The moment of inertia of an object, symbolized by , is a measure of the object's resistance to changes to its rotation. The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia.