Ads
related to: helical antenna radiation pattern tool
Search results
Results From The WOW.Com Content Network
2.4 GHz helical antenna radiation pattern (NEC simulation) The Numerical Electromagnetics Code, or NEC, is a popular antenna modeling computer program for wire and surface antennas. It was originally written in FORTRAN during the 1970s by Gerald Burke and Andrew Poggio of the Lawrence Livermore National Laboratory. The code was made publicly ...
The antenna acts similar to a monopole antenna, with an omnidirectional radiation pattern, radiating equal power in all directions perpendicular to the antenna's axis. However, because of the inductance added by the helical shape, the antenna acts like an inductively loaded monopole; at its resonant frequency it is shorter than a quarter ...
The far-field pattern of an antenna may be determined experimentally at an antenna range, or alternatively, the near-field pattern may be found using a near-field scanner, and the radiation pattern deduced from it by computation. [1] The far-field radiation pattern can also be calculated from the antenna shape by computer programs such as NEC.
Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means. The antenna pattern is the response of the antenna to a plane wave incident from a given direction or the relative power density of the wave transmitted by the antenna in a given direction. For a ...
A reconfigurable antenna is an antenna capable of modifying its frequency and radiation properties dynamically, in a controlled and reversible manner. [2] In order to provide a dynamic response, reconfigurable antennas integrate an inner mechanism (such as RF switches, varactors, mechanical actuators or tunable materials) that enable the intentional redistribution of the RF currents over the ...
Omnidirectional radiation patterns are produced by the simplest practical antennas, monopole and dipole antennas, consisting of one or two straight rod conductors on a common axis. Antenna gain (G) is defined as antenna efficiency (e) multiplied by antenna directivity (D) which is expressed mathematically as: =.