When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.

  3. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    A function is differentiable at an interior point a of its domain if and only if it is semi-differentiable at a and the left derivative is equal to the right derivative. An example of a semi-differentiable function, which is not differentiable, is the absolute value function () = | |, at a = 0. We find easily () =, + = If a function is semi ...

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then x {\displaystyle x} is a local minimum, and if it is negative, then x {\displaystyle x} is a local maximum; if it is zero, then the test is inconclusive.

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...

  6. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum.

  8. Semiderivative - Wikipedia

    en.wikipedia.org/wiki/Semiderivative

    Semiderivative or Semi-derivative may refer to: One-sided derivative of semi-differentiable functions Half-derivative , an operator H {\displaystyle H} that when acting twice on a function f {\displaystyle f} gives the derivative of f {\displaystyle f} .

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Combining derivatives of different variables results in a notion of a partial differential operator. The linear operator which assigns to each function its derivative is an example of a differential operator on a function space. By means of the Fourier transform, pseudo-differential operators can be defined which allow for fractional calculus.