When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anode ray - Wikipedia

    en.wikipedia.org/wiki/Anode_ray

    An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. [1] Later work on anode rays by Wilhelm Wien and J. J. Thomson led to the development of mass spectrometry.

  3. Crookes tube - Wikipedia

    en.wikipedia.org/wiki/Crookes_tube

    Crookes X-ray tube from around 1910 Another Crookes x-ray tube. The device attached to the neck of the tube (right) is an "osmotic softener". When the voltage applied to a Crookes tube is high enough, around 5,000 volts or greater, [16] it can accelerate the electrons to a high enough velocity to create X-rays when they hit the anode or the glass wall of the tube.

  4. Ives–Stilwell experiment - Wikipedia

    en.wikipedia.org/wiki/Ives–Stilwell_experiment

    Figure 1. Ives–Stilwell experiment (1938). "Canal rays" (a mixture of mostly H 2 + and H 3 + ions) were accelerated through perforated plates charged from 6,788 to 18,350 volts. The beam and its reflected image were simultaneously observed with the aid of a concave mirror offset 7° from the beam. [1] Figure 2.

  5. History of mass spectrometry - Wikipedia

    en.wikipedia.org/wiki/History_of_mass_spectrometry

    Canal rays, also called anode rays, were observed by Eugen Goldstein, in 1886. Goldstein used a gas discharge tube which had a perforated cathode. The rays are produced in the holes (canals) in the cathode and travels in a direction opposite to the "cathode rays," which are streams of electrons.

  6. Line focus principle - Wikipedia

    en.wikipedia.org/wiki/Line_Focus_Principle

    The kinetic energy of the electrons is converted into heat and radiation (X-ray photons) due to these interactions. Most of the energy carried by the electrons is converted to heat (99%). Only 1% is converted into radiation or X-rays. In order to assist with the dissipation of such high heat, a larger focal spot or focal track is needed.

  7. Cathode ray - Wikipedia

    en.wikipedia.org/wiki/Cathode_ray

    The electrons in these tubes moved in a slow diffusion process, never gaining much speed, so these tubes didn't produce cathode rays. Instead, they produced a colorful glow discharge (as in a modern neon light ), caused when the electrons struck gas atoms, exciting their orbital electrons to higher energy levels.

  8. Caustic (optics) - Wikipedia

    en.wikipedia.org/wiki/Caustic_(optics)

    Caustics produced by a glass of water, visible as patches of light Cardioid caustic at the bottom of a teacup Caustics made by the surface of water Caustics in shallow water In optics , a caustic or caustic network [ 1 ] is the envelope of light rays which have been reflected or refracted by a curved surface or object, or the projection of that ...

  9. Electron crystallography - Wikipedia

    en.wikipedia.org/wiki/Electron_crystallography

    Thus, X-rays will travel through a thin 2-dimensional crystal without diffracting significantly, whereas electrons can be used to form an image. Conversely, the strong interaction between electrons and protons makes thick (e.g. 3-dimensional > 1 micrometer) crystals impervious to electrons, which only penetrate short distances.