Search results
Results From The WOW.Com Content Network
Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.
An example in dog coat genetics is the homozygosity with the allele "e e" on the Extension-locus making it impossible to produce any other pigment than pheomelanin. Although the allele "e" is a recessive allele on the extension-locus itself, the presence of two copies leverages the dominance of other coat colour genes.
Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]
Compared to examples of overdominance in actual populations, underdominance is considered more unstable [3] [4] and may lead to the fixation of either allele. [ 1 ] [ 5 ] [ 6 ] An example of stable underdominance may occur in individuals who are heterozygotic for polymorphisms that would make them better suited for one of two niches . [ 7 ]
Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.
Blending inheritance is an obsolete theory in biology from the 19th century. The theory is that the progeny inherits any characteristic as the average of the parents' values of that characteristic. As an example of this, a crossing of a red flower variety with a white variety of the same species would yield pink-flowered offspring.
This page was last edited on 21 March 2024, at 20:13 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
In the example pictured to the right, RRYY/rryy parents result in F 1 offspring that are heterozygous for both R and Y (RrYy). [4] This is a dihybrid cross of two heterozygous parents. The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1.