When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  3. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two component rotations. He derived this formula in 1840 (see page 408). [3] The three rotation axes A, B, and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation ...

  5. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    Rotation is given by ′ (′ + ′ + ′) = † = (+ +) (+ + +), which it can be confirmed by multiplying out gives the Euler–Rodrigues formula as stated above. Thus, the Euler parameters are the real and imaginary coordinates in an SU(2) matrix corresponding to an element of the spin group Spin(3), which maps by a double cover mapping to a ...

  6. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    Contains the three translations along the coordinate axes; μ – scale factor, which is unitless; if it is given in ppm, it must be divided by 1,000,000 and added to 1. R – rotation matrix. Consists of three axes (small [clarification needed] rotations around each of the three coordinate axes) r x, r y, r z. The rotation matrix is an ...

  7. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  8. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  9. Infinitesimal rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_rotation_matrix

    An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.