Search results
Results From The WOW.Com Content Network
Like other chlorosilanes or silanes, silicon tetrachloride reacts readily with water: . SiCl 4 + 2 H 2 O → SiO 2 + 4 HCl. The reaction can be noticed on exposure of the liquid to air, as SiCl 4 vapour produces fumes as it reacts with moisture to give a cloud-like aerosol of silica and hydrochloric acid. [6]
CaSi with its zigzag chains of silicon atoms instead reacts to give silanes and polymeric SiH 2, while CaSi 2 with its puckered layers of silicon atoms does not react with water, but will react with dilute hydrochloric acid: the product is a yellow polymeric solid with stoichiometry Si 2 H 2 O. [2]
The methylchlorosilanes react with water to produce hydrogen chloride, giving siloxanes. In the case of trimethylsilyl chloride, the hydrolyzed product is hexamethyldisiloxane: 2 ((CH 3) 3 SiCl + H 2 O → [(CH 3) 3 Si] 2 O + 2 HCl. The analogous reaction of dimethyldichlorosilane gives siloxane polymers or rings: n (CH 3) 2 SiCl 2 + n H 2 O ...
A reported silicon phosphide is Si 12 P 5 (no practical applications), [89] [90] formed by annealing an amorphous Si-P alloy. The arsenic–silicon phase diagram measured at 40 Bar has two phases: SiAs and SiAs 2. [91] The antimony–silicon system comprises a single eutectic close to the melting point of Sb. [92] The bismuth system is a ...
Molten salts (fluoride, chloride, and nitrate) can be used as heat transfer fluids as well as for thermal storage. This thermal storage is used in concentrated solar power plants. [8] [9] Molten-salt reactors are a type of nuclear reactor that uses molten salt(s) as a coolant or as a solvent in which the fissile material is dissolved ...
These chlorides are produced by the "Direct process", which entails the reaction of methyl chloride with a silicon-copper alloy. The main and most sought-after product is dimethyldichlorosilane: 2 CH 3 Cl + Si → (CH 3) 2 SiCl 2. A variety of other products are obtained, including trimethylsilyl chloride and methyltrichlorosilane
Diet plays a large role in water retention and the most common culprit is salt. Water follows sodium, Schnoll-Sussman explains, which means the body retains fluid to compensate for excess salt.
This also includes water, potentially producing silicon dioxide, chlorine, hydrogen, hydrogen chloride (and its aqueous form hydrochloric acid), and heat. Trichlorosilane can cause hazardous chemical reactions with moisture and humidity alone, and should be handled and stored under inert gas. [8]