Search results
Results From The WOW.Com Content Network
The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure). The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc. For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints. If an angle is subtended by a straight or curved segment, the segment is said to subtend the angle.
Case: One chord is a diameter. Let O be the center of a circle, as in the diagram at right. Choose two points on the circle, and call them V and A. Draw line OV and extended past O so that it intersects the circle at point B which is diametrically opposite the point V. Draw an angle whose vertex is point V and whose sides pass through points A ...
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
The fractional parts of chord lengths required great accuracy, and were given in sexagesimal notation in two columns in the table: The first column gives an integer multiple of 1 / 60 , in the range 0–59, the second an integer multiple of 1 / 60 2 = 1 / 3600 , also in the range 0–59.
If P 0 is taken to be the point (1, 1), P 1 the point (x 1, 1/x 1), and P 2 the point (x 2, 1/x 2), then the parallel condition requires that Q be the point (x 1 x 2, 1/x 1 1/x 2). It thus makes sense to define the hyperbolic angle from P 0 to an arbitrary point on the curve as a logarithmic function of the point's value of x. [1] [2]