Ad
related to: rna polymerase binding site
Search results
Results From The WOW.Com Content Network
RNA polymerase binding in bacteria involves the sigma factor recognizing the core promoter region containing the −35 and −10 elements (located before the beginning of sequence to be transcribed) and also, at some promoters, the α subunit C-terminal domain recognizing promoter upstream elements. [12]
For transcription to take place, the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA near a gene.Promoters contain specific DNA sequences such as response elements that provide a secure initial binding site for RNA polymerase and for proteins called transcription factors that recruit RNA polymerase.
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [11] It consists of RNA polymerase II, a subset of general transcription factors , and regulatory proteins known as SRB proteins.
[2] [3] Thus, activator proteins help to promote the binding of the RNA polymerase to the promoter. [2] [3] This is done through various mechanisms. Activators may bend the DNA in order to better expose the promoter so the RNA polymerase can bind more effectively. [3] Activators may make direct contact with the RNA polymerase and secure it to ...
RNA polymerase pauses at the termination sequence, which is because there is a specific site around 100 nt away from the Rho binding site called the Rho-sensitive pause site. So, even though the RNA polymerase is about 40 nt per second faster than Rho, it does not pose a problem for the Rho termination mechanism as the RNA polymerase allows Rho ...
These factors typically have DNA-binding domains that bind specific sequence elements of the core promoter and help recruit RNA polymerase to the transcriptional start site. General transcription factors for RNA polymerase II include TFIID , TFIIA , TFIIB , TFIIF , TFIIE , and TFIIH .
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [ 1 ] [ 2 ] It consists of RNA polymerase II , a subset of general transcription factors , and regulatory proteins known as SRB proteins [ clarification needed ] .