When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    Algebraic curves in the plane may be defined as the set of points (x, y) satisfying an equation of the form (,) =, where f is a polynomial function ⁠:. ⁠ If f is expanded as = + + + + + + If the origin (0, 0) is on the curve then a 0 = 0.

  3. Singular point of an algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_an...

    A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth. The concept is generalized to smooth schemes in the modern language of scheme theory. The plane algebraic curve (a cubic curve) of equation y 2 − x 2 (x + 1) = 0 crosses itself at ...

  4. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    The definitions for plane curves and implicitly-defined curves have been generalized by René Thom and Vladimir Arnold to curves defined by differentiable functions: a curve has a cusp at a point if there is a diffeomorphism of a neighborhood of the point in the ambient space, which maps the curve onto one of the above-defined cusps.

  5. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    The simplest example of singularities are curves that cross themselves. But there are other types of singularities, like cusps. For example, the equation y 2 − x 3 = 0 defines a curve that has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at ...

  6. Singularity theory - Wikipedia

    en.wikipedia.org/wiki/Singularity_theory

    It was noticed in the formulation of Bézout's theorem that such singular points must be counted with multiplicity (2 for a double point, 3 for a cusp), in accounting for intersections of curves. It was then a short step to define the general notion of a singular point of an algebraic variety; that is, to allow higher dimensions.

  7. Regular singular point - Wikipedia

    en.wikipedia.org/wiki/Regular_singular_point

    Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.

  8. Singular solution - Wikipedia

    en.wikipedia.org/wiki/Singular_solution

    A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...

  9. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    The Whitney umbrella x 2 = y 2 z has singular set the z axis, most of whose point are ordinary double points, but there is a more complicated pinch point singularity at the origin, so blowing up the worst singular points suggests that one should start by blowing up the origin. However blowing up the origin reproduces the same singularity on one ...