Search results
Results From The WOW.Com Content Network
The former is concerned with static friction (also known as "stiction" [3]) or "limiting friction", whilst the latter is dynamic friction, also called "sliding friction". For steel on steel, the coefficient of friction can be as high as 0.78, under laboratory conditions, but typically on railways it is between 0.35 and 0.5, [4] whilst under ...
For example, static friction can prevent an object from sliding down a sloped surface. The coefficient of static friction, typically denoted as μ s, is usually higher than the coefficient of kinetic friction. Static friction is considered to arise as the result of surface roughness features across multiple length scales at solid surfaces.
In systems with significant nonuniform stress fields, the macroscopic static friction coefficient depends on the external pressure, system size, or shape because local slip occurs before the system slides. [18] The following table shows the values of the static and dynamic friction coefficients for common materials:
is the rolling resistance coefficient or coefficient of rolling friction with dimension of length, and N {\displaystyle N} is the normal force (equal to W , not R , as shown in figure 1). The above equation, where resistance is inversely proportional to radius r {\displaystyle r} seems to be based on the discredited "Coulomb's law" (Neither ...
Frictional contact mechanics emphasizes the effect of friction forces. Contact mechanics is part of mechanical engineering. The physical and mathematical formulation of the subject is built upon the mechanics of materials and continuum mechanics and focuses on computations involving elastic, viscoelastic, and plastic bodies in static or dynamic ...
Thurston did not have the experimental means to record a continuous graph of the coefficient of friction but only measured it at discrete points. This may be the reason why the minimum in the coefficient of friction for a liquid-lubricated journal bearing was not discovered by him, but was demonstrated by the graphs of Martens and Stribeck.
The equation used to model belt friction is, assuming the belt has no mass and its material is a fixed composition: [2] = where is the tension of the pulling side, is the tension of the resisting side, is the static friction coefficient, which has no units, and is the angle, in radians, formed by the first and last spots the belt touches the pulley, with the vertex at the center of the pulley.
Stiction (a portmanteau of the words static and friction) [1] is the force that needs to be overcome to enable relative motion of stationary objects in contact. [2] Any solid objects pressing against each other (but not sliding) will require some threshold of force parallel to the surface of contact in order to overcome static adhesion. [3]