Search results
Results From The WOW.Com Content Network
Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light.
A physical body as a whole is assumed to have such quantitative properties as mass, momentum, electric charge, other conserved quantities, and possibly other quantities. An object with known composition and described in an adequate physical theory is an example of physical system.
This is a list of common physical constants and variables, and their notations. ... energy: joule (J) Young's modulus: pascal (Pa) or newton per square meter (N/m 2)
A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. [ 101 ] [ 102 ] Physicists generally are interested in the root or ultimate causes of phenomena , and usually frame their understanding in mathematical terms.
kinetic energy The energy that a physical body possesses due to its motion, defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. The body continues to maintain this kinetic energy unless its velocity changes. Contrast potential energy. Kirchhoff's circuit laws
The first law specifies that energy can be transferred between physical systems as heat, as work, and with transfer of matter. [5] The second law defines the existence of a quantity called entropy , that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to ...
However this is not the whole story, in reality energy is not so arbitrarily defined: in general relativity the seat of the curvature of spacetime is the energy content and there the absolute amount of energy has real physical meaning. There is no such thing as an arbitrary additive constant with density of field energy. Energy density curves ...
The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions.A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).