Search results
Results From The WOW.Com Content Network
It can only choose a new state, the result of following the transition. A pushdown automaton (PDA) differs from a finite state machine in two ways: It can use the top of the stack to decide which transition to take. It can manipulate the stack as part of performing a transition. A pushdown automaton reads a given input string from left to right.
The two are not equivalent for the deterministic pushdown automaton (although they are for the non-deterministic pushdown automaton). The languages accepted by empty stack are those languages that are accepted by final state and are prefix-free: no word in the language is the prefix of another word in the language. [2] [3]
An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars ...
A two-way deterministic finite automaton (2DFA) is an abstract machine, a generalized version of the deterministic finite automaton (DFA) which can revisit characters already processed. As in a DFA, there are a finite number of states with transitions between them based on the current character, but each transition is also labelled with a value ...
The earlier concept of Turing machine was also included in the discipline along with new forms of infinite-state automata, such as pushdown automata. 1956 saw the publication of Automata Studies, which collected work by scientists including Claude Shannon, W. Ross Ashby, John von Neumann, Marvin Minsky, Edward F. Moore, and Stephen Cole Kleene. [4]
Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.
The () parser is a deterministic pushdown automaton with the ability to peek on the next input symbols without reading. This peek capability can be emulated by storing the lookahead buffer contents in the finite state space, since both buffer and input alphabet are finite in size.
The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing.Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.