Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects ... be an integer. For example, the secant ... the rate of convergence and order of convergence of a sequence ...
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
Sidi's method reduces to the secant method if we take k = 1. In this case the polynomial p n , 1 ( x ) {\displaystyle p_{n,1}(x)} is the linear approximation of f {\displaystyle f} around α {\displaystyle \alpha } which is used in the n th iteration of the secant method.
The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f ( x ) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically.
Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations:
The convergence rate of the bisection method could possibly be improved by using a different solution estimate. The regula falsi method calculates the new solution estimate as the x-intercept of the line segment joining the endpoints of the function on the current bracketing interval. Essentially, the root is being approximated by replacing the ...