Search results
Results From The WOW.Com Content Network
Fixed-point iterations are a discrete dynamical system on one variable. Bifurcation theory studies dynamical systems and classifies various behaviors such as attracting fixed points, periodic orbits, or strange attractors. An example system is the logistic map.
Depending on the value of μ, the tent map demonstrates a range of dynamical behaviour ranging from predictable to chaotic. If μ is less than 1 the point x = 0 is an attractive fixed point of the system for all initial values of x i.e. the system will converge towards x = 0 from any initial value of x.
A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]
The Duffing map (also called as 'Holmes map') is a discrete-time dynamical system. It is an example of a dynamical system that exhibits chaotic behavior. The Duffing map takes a point (x n, y n) in the plane and maps it to a new point given by + = + = +.
From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle. When difference equations are employed, the theory is called discrete dynamical systems.
The concept of fixed points is of primary importance in discrete dynamical systems. Another graphical technique that can be used for one-variable mappings is the spider web projection. After determining an initial value x 0 {\displaystyle x_{0}} on the horizontal axis, draw a vertical line from the initial value x 0 {\displaystyle x_{0}} to the ...
discrete: complex: 1: 0: acts on the Julia set for the squaring map. Complex cubic map: discrete: complex: 1: 2: Clifford fractal map [13] discrete: real: 2: 4: Degenerate Double Rotor map: De Jong fractal map [14] discrete: real: 2: 4: Delayed-Logistic system [15] discrete: real: 2: 1: Discretized circular Van der Pol system [16] discrete ...
In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems.