Search results
Results From The WOW.Com Content Network
The relationship between the two measured quantities is often expressed as a power law equation (allometric equation) which expresses a remarkable scale symmetry: [7] Allometric equation: way of expressions [8] =, or in a logarithmic form, = + , or similarly,
Allometric engineering is the process of experimentally shifting the scaling relationships, for body size or shape, in a population of organisms. More specifically, the process of experimentally breaking the tight covariance evident among component traits of a complex phenotype by altering the variance of one trait relative to another.
A global isometry, isometric isomorphism or congruence mapping is a bijective isometry. Like any other bijection, a global isometry has a function inverse. The inverse of a global isometry is also a global isometry. Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y.
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).
Scale analysis rules as follows: Rule1-First step in scale analysis is to define the domain of extent in which we apply scale analysis. Any scale analysis of a flow region that is not uniquely defined is not valid. Rule2-One equation constitutes an equivalence between the scales of two dominant terms appearing in the equation. For example,
Scaling of Navier–Stokes equation refers to the process of selecting the proper spatial scales – for a certain type of flow – to be used in the non-dimensionalization of the equation. Since the resulting equations need to be dimensionless, a suitable combination of parameters and constants of the equations and flow (domain ...
The Santa Ynez Reservoir, a 117-million-gallon water resource near the Pacific Palisades, was under renovation and empty when fires tore through the Los Angeles neighborhood last week and ...
In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas.