Search results
Results From The WOW.Com Content Network
Some bacteria are naturally resistant to certain antibiotics; for example, gram-negative bacteria are resistant to most β-lactam antibiotics due to the presence of β-lactamase. Antibiotic resistance can also be acquired as a result of either genetic mutation or horizontal gene transfer . [ 156 ]
The evolution of bacteria on a "Mega-Plate" petri dish A list of antibiotic resistant bacteria is provided below. These bacteria have shown antibiotic resistance (or antimicrobial resistance). Gram positive Clostridioides difficile Clostridioides difficile is a nosocomial pathogen that causes diarrheal disease worldwide. Diarrhea caused by C. difficile can be life-threatening. Infections are ...
Antibiotic resistant bacteria are able to transfer copies of DNA that code for a mechanism of resistance to other bacteria even distantly related to them, which then are also able to pass on the resistance genes, resulting in generations of antibiotics resistant bacteria. [11] This initial transfer of DNA is called horizontal gene transfer. [12]
Bacteria are marked as sensitive, resistant, or having intermediate resistance to an antibiotic based on the minimum inhibitory concentration (MIC), which is the lowest concentration of the antibiotic that stops the growth of bacteria. The MIC is compared to standard threshold values (called "breakpoints") for a given bacterium and antibiotic. [28]
Bacteria are capable of sharing these resistance factors in a process called horizontal gene transfer where resistant bacteria share genetic information that encodes resistance to the naive population. [6] Antibiotic inactivation: bacteria create proteins that can prevent damage caused by antibiotics, they can do this in two ways.
A review of investigational antibiotics shows that several new agents will become available in the coming years, even though the pace of antimicrobial research has proven far too slow. Overuse of antimicrobial agents and problems with infection control practices have led to the development of multidrug-resistant gram-negative bacterial infections.
The development of antibiotic resistance in particular stems from the drugs targeting only specific bacterial molecules (almost always proteins). Because the drug is so specific, any mutation in these molecules will interfere with or negate its destructive effect, resulting in antibiotic resistance. [2]
The resistome was first used to describe the resistance capabilities of bacteria preventing the effectiveness of antibiotics . [4] [5] Although antibiotics and their accompanying antibiotic resistant genes come from natural habitats, before next-generation sequencing, most studies of antibiotic resistance had been confined to the laboratory. [6]