Ad
related to: inductive reasoning and conjecture geometry
Search results
Results From The WOW.Com Content Network
Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. [1] [2] This article is concerned with the inductive reasoning other than deductive reasoning (such as mathematical induction), where the conclusion of a deductive argument is certain, given the premises are correct; in contrast, the truth of the ...
In inductive reasoning, one makes a series of observations and infers a claim based on them. For instance, from a series of observations that a woman walks her dog by the market at 8 am on Monday, it seems valid to infer that next Monday she will do the same, or that, in general, the woman walks her dog by the market every Monday.
Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy, in which the examination of many cases results in a probable conclusion. The mathematical method examines infinitely many cases to prove a general statement, but it does so by a finite chain of deductive reasoning involving the ...
Old knowledge-building methods were often not based in facts, but on broad, ill-proven deductions and metaphysical conjecture. Even when theories were based in fact, they were often broad generalisations and/or abstractions from few instances of casually gathered observations.
Despite its name, mathematical induction is a method of deduction, not a form of inductive reasoning. In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case.
Francis Bacon, articulating inductivism in England, is often falsely stereotyped as a naive inductivist. [11] [12] Crudely explained, the "Baconian model" advises to observe nature, propose a modest law that generalizes an observed pattern, confirm it by many observations, venture a modestly broader law, and confirm that, too, by many more observations, while discarding disconfirmed laws. [13]
It evolved through the use of abstraction and logical reasoning, from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Mathematicians explore such concepts, aiming to formulate new conjectures and establish their truth by rigorous deduction from appropriately chosen axioms and definitions.
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to ...