When.com Web Search

  1. Ad

    related to: deductive reasoning in geometry examples

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation".

  3. Van Hiele model - Wikipedia

    en.wikipedia.org/wiki/Van_Hiele_model

    The object of thought is deductive reasoning (simple proofs), which the student learns to combine to form a system of formal proofs (Euclidean geometry). Learners can construct geometric proofs at a secondary school level and understand their meaning. They understand the role of undefined terms, definitions, axioms and theorems in

  4. Deductive reasoning - Wikipedia

    en.wikipedia.org/wiki/Deductive_reasoning

    This theory of deductive reasoning – also known as term logic – was developed by Aristotle, but was superseded by propositional (sentential) logic and predicate logic. [citation needed] Deductive reasoning can be contrasted with inductive reasoning, in regards to validity and soundness. In cases of inductive reasoning, even though the ...

  5. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    For example, in every logical system capable of expressing the Peano axioms, the Gödel sentence holds for the natural numbers but cannot be proved. Here a logical system is said to be effectively given if it is possible to decide, given any formula in the language of the system, whether the formula is an axiom, and one which can express the ...

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]

  7. Formal system - Wikipedia

    en.wikipedia.org/wiki/Formal_system

    Often the formal system will be the basis for or even identified with a larger theory or field (e.g. Euclidean geometry) consistent with the usage in modern mathematics such as model theory. [clarification needed] An example of a deductive system would be the rules of inference and axioms regarding equality used in first order logic.

  8. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    A good example is the relative consistency of absolute geometry with respect to the theory of the real number system. Lines and points are undefined terms (also called primitive notions) in absolute geometry, but assigned meanings in the theory of real numbers in a way that is consistent with both axiom systems. [citation needed]

  9. Deduction theorem - Wikipedia

    en.wikipedia.org/wiki/Deduction_theorem

    The deduction theorem for predicate logic is similar, but comes with some extra constraints (that would for example be satisfied if is a closed formula). In general a deduction theorem needs to take into account all logical details of the theory under consideration, so each logical system technically needs its own deduction theorem, although ...