When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Best, worst and average case - Wikipedia

    en.wikipedia.org/wiki/Best,_worst_and_average_case

    Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements. The run time grows to O(nlog(n)) if all elements must be distinct.

  3. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    [17] [22] [23] This definition allows larger running times than the first definition of sub-exponential time. An example of such a sub-exponential time algorithm is the best-known classical algorithm for integer factorization, the general number field sieve, which runs in time about ~ (/), where the length of the input is n.

  4. Fold (higher-order function) - Wikipedia

    en.wikipedia.org/wiki/Fold_(higher-order_function)

    Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...

  5. Amortized analysis - Wikipedia

    en.wikipedia.org/wiki/Amortized_analysis

    Amortized analysis initially emerged from a method called aggregate analysis, which is now subsumed by amortized analysis. The technique was first formally introduced by Robert Tarjan in his 1985 paper Amortized Computational Complexity, [1] which addressed the need for a more useful form of analysis than the common probabilistic methods used.

  6. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  7. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  8. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    For example, the amount of time it takes to solve problems in the complexity class P grows at a polynomial rate as the input size increases, which is comparatively slow compared to problems in the exponential complexity class EXPTIME (or more accurately, for problems in EXPTIME that are outside of P, since ).

  9. Average-case complexity - Wikipedia

    en.wikipedia.org/wiki/Average-case_complexity

    In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs.