Search results
Results From The WOW.Com Content Network
The unified shader model uses the same hardware resources for both vertex and fragment processing. In the field of 3D computer graphics, the unified shader model (known in Direct3D 10 as "Shader Model 4.0") refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the same capabilities.
Core config – The layout of the graphics pipeline, in terms of functional units. Over time the number, type, and variety of functional units in the GPU core has changed significantly; before each section in the list there is an explanation as to what functional units are present in each generation of processors.
This is accelerated by the use of new RT (ray-tracing) cores, which are designed to process quadtrees and spherical hierarchies, and speed up collision tests with individual triangles. Features in Turing: CUDA cores (SM, Streaming Multiprocessor) Compute Capability 7.5; traditional rasterized shaders and compute
In G80/G90/GT200, each Streaming Multiprocessor (SM) contains 8 Shader Processors (SP, or Unified Shader, or CUDA Core) and 2 Special Function Units (SFU). Each SP can fulfill up to two single-precision operations per clock: 1 Multiply and 1 Add, using a single MAD instruction. Each SFU can fulfill up to four operations per clock: four MUL ...
In computing, CUDA (Compute Unified Device Architecture) is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
Note that the previous generation Tesla could dual-issue MAD+MUL to CUDA cores and SFUs in parallel, but Fermi lost this ability as it can only issue 32 instructions per cycle per SM which keeps just its 32 CUDA cores fully utilized. [3] Therefore, it is not possible to leverage the SFUs to reach more than 2 operations per CUDA core per cycle.
Pixel shaders, also known as fragment shaders, compute color and other attributes of each "fragment": a unit of rendering work affecting at most a single output pixel. The simplest kinds of pixel shaders output one screen pixel as a color value; more complex shaders with multiple inputs/outputs are also possible. [ 5 ]
The SMX are the key method for Kepler's power efficiency as the whole GPU uses a single "Core Clock" rather than the double-pump "Shader Clock". [4] The SMX usage of a single unified clock increases the GPU power efficiency due to the fact that two Kepler CUDA Cores consume 90% power of one Fermi CUDA Core.