When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 3 6 ; 3 6 (both of different transitivity class), or (3 6 ) 2 , tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided ...

  3. List of Euclidean uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_euclidean_uniform...

    An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Regular tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900) This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane , and their dual tilings.

  4. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    The elongated triangular tiling, the only non-Wythoffian convex uniform tiling. There are symmetry groups on the Euclidean plane constructed from fundamental triangles: (4 4 2), (6 3 2), and (3 3 3). Each is represented by a set of lines of reflection that divide the plane into fundamental triangles.

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The tiling images show a single spherical polygon face in yellow. Name Image ... 6 are convex, 10 are nonconvex, one is a Euclidean 3-space honeycomb, ...

  6. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a divisor of 360°, the angle measure of a whole turn.

  7. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.) Point groups:

  8. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    In geometry, a Cairo pentagonal tiling is a tessellation of the Euclidean plane by congruent convex pentagons, formed by overlaying two tessellations of the plane by hexagons and named for its use as a paving design in Cairo.

  9. List of k-uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_k-uniform_tilings

    Such periodic tilings of convex polygons may be classified by the number of orbits of vertices, edges and tiles. If there are k orbits of vertices, a tiling is known as k-uniform or k-isogonal; if there are t orbits of tiles, as t-isohedral; if there are e orbits of edges, as e-isotoxal.