Ad
related to: how to determine power factor in electricity
Search results
Results From The WOW.Com Content Network
The presence of reactive power causes the real power to be less than the apparent power, and so, the electric load has a power factor of less than 1. A negative power factor (0 to −1) can result from returning active power to the source, such as in the case of a building fitted with solar panels when surplus power is fed back into the supply.
For instance, a power factor of 0.68 means that only 68 percent of the total current supplied (in magnitude) is actually doing work; the remaining current does no work at the load. Power Factor is very important in Power sector substations. Form the national grid the sub sectors are required to have minimum amount of power factor.
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. [1] It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load ...
Power factor is the ratio of resistive (or real) power to volt-amperes. A capacitive load has a leading power factor, and an inductive load has a lagging power factor. A purely resistive load (such as a filament lamp, heater or kettle) exhibits a power factor of 1. Current harmonics are a measure of distortion of the wave form.
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...
The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy, such as wind, the sun or hydro-electric installations. The average capacity factor can also be defined for any class of such installations, and can be used to compare different types of ...
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):