Search results
Results From The WOW.Com Content Network
Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...
The penetrating power of x-ray, gamma, beta, and positron radiation is used for medical imaging, nondestructive testing, and a variety of industrial gauges. Radioactive tracers are used in medical and industrial applications, as well as biological and radiation chemistry. Alpha radiation is used in static eliminators and smoke detectors.
Alpha- beta- and gamma rays can only be emitted if the conservation laws (energy, angular momentum, parity) are obeyed. This leads to so-called selection rules. Applications for gamma decay can be found in Multipolarity of gamma radiation. To discuss such a rule in a particular case, it is necessary to know angular momentum and parity for every ...
In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.
The rays were given the names alpha, beta, and gamma, in increasing order of their ability to penetrate matter. Alpha decay is observed only in heavier elements of atomic number 52 and greater, with the exception of beryllium-8 (which decays to two alpha particles). The other two types of decay are observed in all the elements.
Gamma rays are photons, whose absorption cannot be described by LET. When a gamma quantum passes through matter, it may be absorbed in a single process (photoelectric effect, Compton effect or pair production), or it continues unchanged on its path. (Only in the case of the Compton effect, another gamma quantum of lower energy proceeds).
nuclear decay (alpha particles are the main type of interest here since beta and gamma rays are rarely involved in nuclear reactions); very high temperatures, on the order of millions of degrees, producing thermonuclear reactions; cosmic rays.
Early on it was found that X-rays, gamma rays, and beta radiation were essentially equivalent for all cell types. Therefore, the standard radiation type X is generally an X-ray beam with 250 keV photons or cobalt-60 gamma rays. As a result, the relative biological effectiveness of beta and photon radiation is essentially 1.