Search results
Results From The WOW.Com Content Network
Ethanol-water mixtures have less volume than the sum of their individual components at the given fractions. Mixing equal volumes of ethanol and water results in only 1.92 volumes of mixture. [76] [81] Mixing ethanol and water is exothermic, with up to 777 J/mol [82] being released at 298 K. Hydrogen bonding in solid ethanol at −186 °C
An oil heater, also known as an oil-filled heater, oil-filled radiator, or column heater, is a common form of convection heater used in domestic heating. Although filled with oil , it is electrically heated and does not involve burning any oil fuel ; the oil is used as a heat reservoir (buffer).
Most of the solute does not dissociate in a weak electrolyte, whereas in a strong electrolyte a higher ratio of solute dissociates to form free ions. A weak electrolyte is a substance whose solute exists in solution mostly in the form of molecules (which are said to be "undissociated"), with only a small fraction in the form of ions.
In general, organic acids are weak acids and do not dissociate completely in water, whereas the strong mineral acids do. Lower molecular mass organic acids such as formic and lactic acids are miscible in water, but higher molecular mass organic acids, such as benzoic acid , are insoluble in molecular (neutral) form.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.