Search results
Results From The WOW.Com Content Network
Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...
A plot of normal distribution (or bell-shaped curve) where each band has a width of 1 standard deviation – See also: 68–95–99.7 rule. Cumulative probability of a normal distribution with expected value 0 and standard deviation 1
Conversely, the measure is symmetric when the change decreases by an equivalent amount e.g. a halving is equal to a log 2 fold change of −1, a quartering is equal to a log 2 fold change of −2 and so on. This leads to more aesthetically pleasing plots, as exponential changes are displayed as linear and so the dynamic range is increased.
when the probability distribution of the value is known, it can be used to calculate an exact confidence interval; when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and
Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement. It can also be used to analyze coincidences that happen in lottery drawings, such as repeated numbers appearing across different draws. [1
For example, the probability that it lives longer than 5 hours, but shorter than (5 hours + 1 nanosecond), is (2 hour −1)×(1 nanosecond) ≈ 6 × 10 −13 (using the unit conversion 3.6 × 10 12 nanoseconds = 1 hour). There is a probability density function f with f(5 hours) = 2 hour −1.
In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...
In general, if an increase of x percent is followed by a decrease of x percent, and the initial amount was p, the final amount is p (1 + 0.01 x)(1 − 0.01 x) = p (1 − (0.01 x) 2); hence the net change is an overall decrease by x percent of x percent (the square of the original percent change when expressed as a decimal number).