Ads
related to: whole genome sequencing method
Search results
Results From The WOW.Com Content Network
Whole genome sequencing (WGS) is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. [2] This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast .
The circular chromosome contains 1,830,137 bases and its publication in the journal Science [51] marked the first published use of whole-genome shotgun sequencing, eliminating the need for initial mapping efforts. By 2001, shotgun sequencing methods had been used to produce a draft sequence of the human genome. [52] [53]
In terms of genomic coverage and accuracy, whole genome sequencing can broadly be classified into either of the following: [13] A draft sequence, covering approximately 90% of the genome at approximately 99.9% accuracy; A finished sequence, covering more than 95% of the genome at approximately 99.99% accuracy
Whereas the methods above describe various sequencing methods, separate related terms are used when a large portion of a genome is sequenced. Several platforms were developed to perform exome sequencing (a subset of all DNA across all chromosomes that encode genes) or whole genome sequencing (sequencing of the all nuclear DNA of a human).
Exome sequencing workflow: part 1. Exome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding regions of genes in a genome (known as the exome). [1] It consists of two steps: the first step is to select only the subset of DNA that encodes proteins.
The whole genome sequencing technique was first applied to the DNA methylation mapping at single nucleotide resolution to Arabidopsis thaliana in 2008, and shortly after in 2009, the first single-base-resolution DNA methylation map of the entire human genome was created using whole genome bisulfite sequencing.
The methods that are the most commonly used are whole exome sequencing and whole genome sequencing. Both approaches are used to identify genetic variations. Genome sequencing became more cost-effective over time, and made it applicable in the medical field, allowing scientists to understand which genes are attributed to specific diseases.
Multiple Annealing and Looping Based Amplification Cycles (MALBAC) is a quasilinear whole genome amplification method. Unlike conventional DNA amplification methods that are non-linear or exponential (in each cycle, DNA copied can serve as template for subsequent cycles), MALBAC utilizes special primers that allow amplicons to have complementary ends and therefore to loop, preventing DNA from ...
Ad
related to: whole genome sequencing method