Search results
Results From The WOW.Com Content Network
A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. [1]
The Pythagorean theorem is used to calculate the distance between points in a plane. Even over short distances, the accuracy of geographic distance calculations which assume a flat Earth depend on the method by which the latitude and longitude coordinates have been projected onto the plane.
The Lambert projection is relatively easy to use: conversions from geodetic (latitude/longitude) to State Plane Grid coordinates involve trigonometric equations that are fairly straightforward and which can be solved on most scientific calculators, especially programmable models. [9]
Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection). Equirectangular projection with Tissot's indicatrix of deformation and with the standard parallels lying on the equator True-colour satellite image of Earth in equirectangular projection Height map of planet Earth at 2km per pixel, including oceanic bathymetry information, normalized as 8 ...
In geodesy, geographic coordinate conversion is defined as translation among different coordinate formats or map projections all referenced to the same geodetic datum. [1] A geographic coordinate transformation is a translation among different geodetic datums. Both geographic coordinate conversion and transformation will be considered in this ...
[1] [2] [3] In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. [4] [5] Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography.
and λ is the longitude, λ 0 is the central meridian, φ is the latitude, and R is the radius of the globe to be projected. The map has area 4 π R 2, conforming to the surface area of the generating globe. The x-coordinate has a range of [−2R √ 2, 2R √ 2], and the y-coordinate has a range of [−R √ 2, R √ 2].
The projection coordinates resulting from the various developments of the ellipsoidal transverse Mercator are Cartesian coordinates such that the central meridian corresponds to the x axis and the equator corresponds to the y axis. Both x and y are defined for all values of λ and ϕ. The projection does not define a grid: the grid is an ...