When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ranking (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(information...

    Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.

  3. Discounted cumulative gain - Wikipedia

    en.wikipedia.org/wiki/Discounted_cumulative_gain

    The nDCG values for all queries can be averaged to obtain a measure of the average performance of a search engine's ranking algorithm. Note that in a perfect ranking algorithm, the will be the same as the producing an nDCG of 1.0. All nDCG calculations are then relative values on the interval 0.0 to 1.0 and so are cross-query comparable.

  4. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    The ranking SVM algorithm is a learning retrieval function that employs pairwise ranking methods to adaptively sort results based on how 'relevant' they are for a specific query. The ranking SVM function uses a mapping function to describe the match between a search query and the features of each of the possible results.

  5. Okapi BM25 - Wikipedia

    en.wikipedia.org/wiki/Okapi_BM25

    In information retrieval, Okapi BM25 (BM is an abbreviation of best matching) is a ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson , Karen Spärck Jones , and others.

  6. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    A possible architecture of a machine-learned search engine. Ranking is a central part of many information retrieval problems, such as document retrieval, collaborative filtering, sentiment analysis, and online advertising. A possible architecture of a machine-learned search engine is shown in the accompanying figure.

  7. PageRank - Wikipedia

    en.wikipedia.org/wiki/PageRank

    PageRank (PR) is an algorithm used by Google Search to rank web pages in their search engine results. It is named after both the term "web page" and co-founder Larry Page. PageRank is a way of measuring the importance of website pages. According to Google:

  8. Relevance (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Relevance_(information...

    It considers the relevance of each document only in terms of how much new information it brings given the previous results. [13] In some cases, a query may have an ambiguous interpretation, or a variety of potential responses. Providing a diversity of results can be a consideration when evaluating the utility of a result set. [14]

  9. Search engine - Wikipedia

    en.wikipedia.org/wiki/Search_engine

    Most search engines employ methods to rank the results to provide the "best" results first. How a search engine decides which pages are the best matches, and what order the results should be shown in, varies widely from one engine to another. [35] The methods also change over time as Internet usage changes and new techniques evolve.