When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    Thus by the superposition principle for linear homogeneous differential equations, a second-order differential equation having complex roots r = a ± bi will result in the following general solution: = (⁡ + ⁡)

  3. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  5. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  6. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.

  7. Homogeneous polynomial - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_polynomial

    The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial. [notes 1] A binary form is a form in two variables. A form is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over ...

  8. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For simple roots, this results immediately from the implicit function theorem. This is true also for multiple roots, but some care is needed for the proof. A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial).