When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    If the characteristic equation has a root r 1 that is repeated k times, then it is clear that y p (x) = c 1 e r 1 x is at least one solution. [1] However, this solution lacks linearly independent solutions from the other k − 1 roots. Since r 1 has multiplicity k, the differential equation can be factored into [1]

  3. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    which is the characteristic equation of the recurrence relation. Solve for to obtain the two roots , : these roots are known as the characteristic roots or eigenvalues of the characteristic equation. Different solutions are obtained depending on the nature of the roots: If these roots are distinct, we have the general solution

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor (possibly negative). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those ...

  5. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .

  6. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    For example, if A is a multiple aI n of the identity matrix, then its minimal polynomial is X − a since the kernel of aI n − A = 0 is already the entire space; on the other hand its characteristic polynomial is (X − a) n (the only eigenvalue is a, and the degree of the characteristic polynomial is always equal to the dimension of the space).

  7. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    The complex conjugate root theorem states that if the coefficients of a polynomial are real, then the non-real roots appear in pairs of the form (a + ib, a – ib).. It follows that the roots of a polynomial with real coefficients are mirror-symmetric with respect to the real axis.

  8. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots −2, −1 (repeated root), and −1/3 of the quartic 3x 4 +13x 3 +19x 2 +11x+2 using Lill's method. Black segments are labeled with their lengths (coefficients in the equation), while each colored line with initial slope m and the same endpoint corresponds to a real root.

  9. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    We call p(λ) the characteristic polynomial, and the equation, called the characteristic equation, is an N th-order polynomial equation in the unknown λ. This equation will have N λ distinct solutions, where 1 ≤ N λ ≤ N. The set of solutions, that is, the eigenvalues, is called the spectrum of A. [1] [2] [3]