Search results
Results From The WOW.Com Content Network
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.
They can be defined for negative indices ... The Fibonacci and Lucas numbers are recovered by evaluating the ... (6,3)=4 and 5 can be written in 4 ways, 1+1+1+2, 1+1 ...
A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21. The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.
where F n is the n th Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 ...
The negafibonacci code for a particular nonzero integer is exactly that of the integer's negafibonacci representation, except with the order of its digits reversed and an additional "1" appended to the end. The negafibonacci code for all negative numbers has an odd number of digits, while those of all positive numbers have an even number of digits.
A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]
For premium support please call: 800-290-4726 more ways to reach us
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .