Search results
Results From The WOW.Com Content Network
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
Extinction coefficient refers to several different measures of the absorption of light in a medium: Attenuation coefficient , sometimes called "extinction coefficient" in meteorology or climatology Mass extinction coefficient , how strongly a substance absorbs light at a given wavelength, per mass density
[1]: 128 It is related to the absorption coefficient, , through: [39]: 41 = These values depend upon the frequency of the light used in the measurement. That κ corresponds to absorption can be seen by inserting this refractive index into the expression for electric field of a plane electromagnetic wave traveling in the x -direction.
In a transmissometer the extinction coefficient is determined by measuring direct light transmissivity, and the extinction coefficient is then used to calculate visibility range. [ 2 ] Atmospheric extinction is a wavelength dependent phenomenon, but the most common wavelength in use for transmissometers is 550 nm , which is in the middle of the ...
Optical depth is a measure of the extinction coefficient or absorptivity up to a specific 'depth' of a star's makeup. =. [1] The assumption here is that either the extinction coefficient or the column number density is known. These can generally be calculated from other equations if a fair amount of information is known about the chemical ...
The complex amplitude coefficients for reflection and transmission are usually represented by lower case r and t (whereas the power coefficients are capitalized). As before, we are assuming the magnetic permeability, µ of both media to be equal to the permeability of free space µ 0 as is essentially true of all dielectrics at optical frequencies.
The molar extinction coefficient of Hb has its highest absorption peak at 420 nm and a second peak at 580 nm. Its spectrum then gradually decreases as light wavelength increases. On the other hand, H b O 2 {\displaystyle HbO2} shows its highest absorption peak at 410 nm, and two secondary peaks at 550 nm and 600 nm.
In biochemistry, the molar absorption coefficient of a protein at 280 nm depends almost exclusively on the number of aromatic residues, particularly tryptophan, and can be predicted from the sequence of amino acids. [6] Similarly, the molar absorption coefficient of nucleic acids at 260 nm can be predicted given the nucleotide sequence.