When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  3. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Algebraic number: Any number that is the root of a non-zero polynomial with rational coefficients. Transcendental number: Any real or complex number that is not algebraic. Examples include e and π. Trigonometric number: Any number that is the sine or cosine of a rational multiple of π.

  5. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric interpretation of ...

  6. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  7. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    For example, setting c = d = 0 produces a diagonal complex matrix representation of complex numbers, and setting b = d = 0 produces a real matrix representation. The norm of a quaternion (the square root of the product with its conjugate, as with complex numbers) is the square root of the determinant of the corresponding matrix. [30]

  8. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    Generally, if = (⁡ + ⁡) (in polar form) and w are arbitrary complex numbers, then the set of possible values is = (⁡ + ⁡) = {⁡ (+) + ⁡ (+) |}. (Note that if w is a rational number that equals p / q in lowest terms then this set will have exactly q distinct values rather than infinitely many.

  9. Real structure - Wikipedia

    en.wikipedia.org/wiki/Real_structure

    In mathematics, a real structure on a complex vector space is a way to decompose the complex vector space in the direct sum of two real vector spaces. The prototype of such a structure is the field of complex numbers itself, considered as a complex vector space over itself and with the conjugation map:, with () = ¯, giving the "canonical" real structure on , that is =.