Search results
Results From The WOW.Com Content Network
This is related to the angular diameter distance, which is the distance an object is calculated to be at from and , assuming the Universe is Euclidean. The Mattig relation yields the angular-diameter distance, d A {\displaystyle d_{A}} , as a function of redshift z for a universe with Ω Λ = 0.
Euclidean geometry has two fundamental types of measurements: angle and distance. The angle scale is absolute, and Euclid uses the right angle as his basic unit, so that, for example, a 45-degree angle would be referred to as half of a right angle. The distance scale is relative; one arbitrarily picks a line segment with a certain nonzero ...
For example Euclidean spaces of dimension n, and more generally n-dimensional Riemannian manifolds, naturally have the structure of a metric measure space, equipped with the Lebesgue measure. Certain fractal metric spaces such as the SierpiĆski gasket can be equipped with the α-dimensional Hausdorff measure where α is the Hausdorff dimension .
The Euclidean distance is the prototypical example of the distance in a metric space, [10] and obeys all the defining properties of a metric space: [11] It is symmetric, meaning that for all points and , (,) = (,). That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is ...
For any pair of flats in a Euclidean space of arbitrary dimension one can define a set of mutual angles which are invariant under isometric transformation of the Euclidean space. If the flats do not intersect, their shortest distance is one more invariant. [ 1 ]
Just as the diameter of a two-dimensional convex set is the largest distance between two parallel lines tangent to and enclosing the set, the width is often defined to be the smallest such distance. [4] The diameter and width are equal only for a body of constant width, for which all pairs of parallel tangent lines have the same distance. Every ...
By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.
The statistical treatment of such data is in the realm of directional statistics. [ 1 ] The fact that 0 degrees and 360 degrees are identical angles , so that for example 180 degrees is not a sensible mean of 2 degrees and 358 degrees, provides one illustration that special statistical methods are required for the analysis of some types of data ...