When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.

  3. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    The Foundations of Geometry, 2nd ed. Chicago: Open Court. Laura I. Meikle and Jacques D. Fleuriot (2003), Formalizing Hilbert's Grundlagen in Isabelle/Isar Archived 2016-03-04 at the Wayback Machine , Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, Volume 2758/2003, 319-334, doi : 10.1007/10930755_21

  4. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]

  5. Philosophical views of Bertrand Russell - Wikipedia

    en.wikipedia.org/wiki/Philosophical_views_of...

    1897, An Essay on the Foundations of Geometry, Cambridge: At the University Press. 1900, A Critical Exposition of the Philosophy of Leibniz, Cambridge: At the University Press. 1903, The Principles of Mathematics The Principles of Mathematics, Cambridge: At the University Press. 1905 On Denoting, Mind vol. 14, NS, ISSN 0026-4423, Basil Blackwell

  6. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    The second geometric development of this period was the systematic study of projective geometry by Girard Desargues (1591–1661). Projective geometry is the study of geometry without measurement, just the study of how points align with each other. There had been some early work in this area by Hellenistic geometers, notably Pappus (c. 340).

  7. Van Hiele model - Wikipedia

    en.wikipedia.org/wiki/Van_Hiele_model

    The object of thought is deductive reasoning (simple proofs), which the student learns to combine to form a system of formal proofs (Euclidean geometry). Learners can construct geometric proofs at a secondary school level and understand their meaning. They understand the role of undefined terms, definitions, axioms and theorems in

  8. Oskar Becker - Wikipedia

    en.wikipedia.org/wiki/Oskar_Becker

    He served in World War I and returned to study philosophy with Edmund Husserl, writing his Habilitationsschrift on Investigations of the Phenomenological Foundations of Geometry and their Physical Applications, (1923). Becker was Husserl's assistant, informally, and then official editor of the Yearbook for Phenomenological Research.

  9. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and, in particular, to have reliable concepts of theorems, proofs, algorithms, etc. This may also include the philosophical study of the relation of this framework with reality. [1]