Search results
Results From The WOW.Com Content Network
In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light multiplied by a constant, later called the Planck constant. A ...
To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
Einstein's explanation of the photoelectric effect extended the quantum theory which Max Planck had developed in his successful explanation of black-body radiation. Despite the greater fame achieved by his other works, such as that on special relativity, it was his work on the photoelectric effect that won him his Nobel Prize in 1921. [9]
Photoelectric effect Schematic illustration of the photoemission process. Using Einstein's method, the following equations are used: energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron = + where h is the Planck constant;
The photoelectric effect: Einstein explained this in 1905 (and later received a Nobel prize for it) using the concept of photons, particles of light with quantized energy. Robert Millikan's oil-drop experiment, which showed that electric charge occurs as quanta (whole units). (1909)
As shown by Albert Einstein, [10] [53] some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics. [54]
English: Diagram of the photoelectric effect with zinc (Zn) x: frequency of light; y: kinetic energy of the electrons With the spectrum of visible light the electrons aren't emitted.
The notions of light as a particle resurfaced in the 20th century with the photoelectric effect. In 1905, Albert Einstein explained this effect by introducing the concept of light quanta or photons. Quantum particles are considered to have wave–particle duality.