When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.

  3. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  4. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XI n − A (the same one whose determinant ...

  5. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Rather, the Jordan canonical form of () contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix. [2]

  6. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    A more precise statement is given by the Jordan normal form theorem, which states that in this situation, A is similar to an upper triangular matrix of a very particular form. The simpler triangularization result is often sufficient however, and in any case used in proving the Jordan normal form theorem. [1] [3]

  7. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    The Jordan normal form and the Jordan–Chevalley decomposition. Applicable to: square matrix A; Comment: the Jordan normal form generalizes the eigendecomposition to cases where there are repeated eigenvalues and cannot be diagonalized, the Jordan–Chevalley decomposition does this without choosing a basis.

  8. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Similarly as for the Schur decomposition, every square matrix can be decomposed as = where P is invertible and J is in Jordan normal form. To see that any complex matrix with positive eigenvalues has a square root of the same form, it suffices to check this for a Jordan block. Any such block has the form λ(I + N) with λ > 0 and N nilpotent.

  9. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The identity matrix commutes with all matrices. Jordan blocks commute with upper triangular matrices that have the same value along bands. If the product of two symmetric matrices is symmetric, then they must commute. That also means that every diagonal matrix commutes with all other diagonal matrices. [9] [10] Circulant matrices commute.