When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180 x / π )°, so that, for example, sin π = sin 180° when we take x = π .

  5. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    Continuing the process in higher-order derivative results in the repeated same functions; the fourth derivative of a sine is the sine itself. [15] These derivatives can be applied to the first derivative test , according to which the monotonicity of a function can be defined as the inequality of function's first derivative greater or less than ...

  6. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    In other words, the function sine is differentiable at 0, and its derivative is 1. Proof: From the previous inequalities, we have, for small angles sin ⁡ θ < θ < tan ⁡ θ {\displaystyle \sin \theta <\theta <\tan \theta } ,

  8. Bessel function - Wikipedia

    en.wikipedia.org/wiki/Bessel_function

    (The series indicates that −J 1 (x) is the derivative of J 0 (x), much like −sin x is the derivative of cos x; more generally, the derivative of J n (x) can be expressed in terms of J n ± 1 (x) by the identities below.)

  9. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.