Search results
Results From The WOW.Com Content Network
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
The first of these (1 m + 2 3 = 3 2) is the only solution where one of a, b or c is 1, according to the Catalan conjecture, proven in 2002 by Preda Mihăilescu. While this case leads to infinitely many solutions of (1) (since one can pick any m for m > 6), these solutions only give a single triplet of values (a m, b n, c k).
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒Erdős–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to ...
The Faltings height of an elliptic curve or abelian variety defined over a number field is a measure of its complexity introduced by Faltings in his proof of the Mordell conjecture. [14] [15] Fermat's Last Theorem Fermat's Last Theorem, the most celebrated conjecture of Diophantine geometry, was proved by Andrew Wiles and Richard Taylor. Flat ...
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.
In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties.It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has become a very substantial area of arithmetic geometry both in terms of results and conjectures.
While the auxiliary prime has nothing to do with the divisibility by and must also divide either , or for which the violation of the Fermat Theorem would occur and most likely the conjecture is true that for given the auxiliary prime may be arbitrarily large similarly to the Mersenne primes she most likely proved the theorem in the general case by her considerations by infinite ascent because ...