Search results
Results From The WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The apparent molar volume of salt is usually less than the molar volume of the solid salt. For instance, solid NaCl has a volume of 27 cm 3 per mole, but the apparent molar volume at low concentrations is only 16.6 cc/mole.
In that case, the specific volume would equal 0.4672 in 3 /lb. However, if the temperature is changed to 1160 °R, the specific volume of the super heated steam would have changed to 0.2765 in 3 /lb, which is a 59% overall change. Knowing the specific volumes of two or more substances allows one to find useful information for certain applications.
That is 8 times , the volume of each particle of radius / , but there are 2 particles which gives 4 times the volume per particle. The total excluded volume is then = ; that is, 4 times the volume of all the particles. Van der Waals and his contemporaries used an alternative, but equivalent, analysis based on the mean free ...
V m is the molar volume (V/n), a is a constant that corrects for attractive potential of molecules, and; b is a constant that corrects for volume. The constants are different depending on which gas is being analyzed. The constants can be calculated from the critical point data of the gas: [6]
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa
The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.
The equation shows that, as the number of moles of gas increases, the volume of the gas also increases in proportion. Similarly, if the number of moles of gas is decreased, then the volume also decreases. Thus, the number of molecules or atoms in a specific volume of ideal gas is independent of their size or the molar mass of the gas.