When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heegner number - Wikipedia

    en.wikipedia.org/wiki/Heegner_number

    Ramanujan's constant is the transcendental number [5], which is an almost integer: [6] = … +. This number was discovered in 1859 by the mathematician Charles Hermite. [7] In a 1975 April Fool article in Scientific American magazine, [8] "Mathematical Games" columnist Martin Gardner made the hoax claim that the number was in fact an integer, and that the Indian mathematical genius Srinivasa ...

  3. Stark–Heegner theorem - Wikipedia

    en.wikipedia.org/wiki/Stark–Heegner_theorem

    In number theory, the Heegner theorem [1] establishes the complete list of the quadratic imaginary number fields whose rings of integers are principal ideal domains. It solves a special case of Gauss's class number problem of determining the number of imaginary quadratic fields that have a given fixed class number .

  4. Heegner - Wikipedia

    en.wikipedia.org/wiki/Heegner

    Kurt Heegner was a German mathematician; Heegner points are special points on elliptic curves; The Stark–Heegner theorem identifies the imaginary quadratic fields of class number 1. A Heegner number is a number n such that Q(√ −n) is an imaginary quadratic field of class number 1.

  5. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    That is because what enters the analytic formula for the class number is not h, the class number, on its own — but h log ε, where ε is a fundamental unit. This extra factor is hard to control. It may well be the case that class number 1 for real quadratic fields occurs infinitely often.

  6. Gelfond's constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond's_constant

    The number e π √ 163 is known as Ramanujan's constant. Its decimal expansion is given by: e π √ 163 = 262 537 412 640 768 743.999 999 999 999 250 072 59... (sequence A060295 in the OEIS) which suprisingly turns out to be very close to the integer 640320 3 + 744: This is an application of Heegner numbers, where 163 is the

  7. Almost integer - Wikipedia

    en.wikipedia.org/wiki/Almost_integer

    Ed Pegg Jr. noted that the length d equals (), which is very close to 7 (7.0000000857 ca.) [1] In recreational mathematics, an almost integer (or near-integer) is any number that is not an integer but is very close to one.

  8. Sam Darnold landing spots: Eight options for Vikings QB, who ...

    www.aol.com/sam-darnold-landing-spots-eight...

    "Sam Darnold picked the right time to have a career year." In case you missed it, I’m quoting what I wrote before the Minnesota Vikings got run, 27-9, by the Los Angeles Rams in Monday night’s ...

  9. Kurt Heegner - Wikipedia

    en.wikipedia.org/wiki/Kurt_Heegner

    Kurt Heegner (German: [ˈheːɡnɐ]; 16 December 1893 – 2 February 1965) was a German private scholar from Berlin, who specialized in radio engineering and mathematics. He is famous for his mathematical discoveries in number theory and, in particular, the Stark–Heegner theorem .