Search results
Results From The WOW.Com Content Network
A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1] This equivalent condition is formally expressed as follows:
A function is invertible if and only if it is a bijection. Stated in concise mathematical notation, a function f: X → Y is bijective if and only if it satisfies the condition for every y in Y there is a unique x in X with y = f(x).
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
Any equivalence relation is the negation of an apartness relation, though the converse statement only holds in classical mathematics (as opposed to constructive mathematics), since it is equivalent to the law of excluded middle. Each relation that is both reflexive and left (or right) Euclidean is also an equivalence relation.
More precisely, every surjection f : A → B can be factored as a projection followed by a bijection as follows. Let A/~ be the equivalence classes of A under the following equivalence relation: x ~ y if and only if f(x) = f(y). Equivalently, A/~ is the set of all preimages under f.
Hume's principle or HP says that the number of Fs is equal to the number of Gs if and only if there is a one-to-one correspondence (a bijection) between the Fs and the Gs. HP can be stated formally in systems of second-order logic. Hume's principle is named for the Scottish philosopher David Hume and was coined by George Boolos.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
An arbitrary function φ : R n → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1. Khinchine’s criterion. A complex-valued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation