Search results
Results From The WOW.Com Content Network
The ependyma is made up of ependymal cells called ependymocytes, a type of glial cell. These cells line the ventricles in the brain and the central canal of the spinal cord, which become filled with cerebrospinal fluid. These are nervous tissue cells with simple columnar shape, much like that of some mucosal epithelial cells. [2]
Tanycytes are highly specialized ependymal cells found in the third ventricle of the brain, and on the floor of the fourth ventricle. Each tanycyte has a long basal process that extends deep into the hypothalamus. It is possible that their function is to transfer chemical signals from the cerebrospinal fluid to the central nervous system.
The central canal (also known as spinal foramen or ependymal canal) is the cerebrospinal fluid-filled space that runs through the spinal cord. [1] The central canal lies below and is connected to the ventricular system of the brain , from which it receives cerebrospinal fluid, and shares the same ependymal lining.
This schematic illustrates the four different types of glial cells, all of which possess cytoplasmic processes: ependymal cells (light pink), astrocytes (green), microglia (red), and oligodendrocytes (light blue). Cell bodies of neurons are in yellow (Their axons are surrounded by myelin, produced by oligodendrocytes).
Brain cells make up the functional tissue of the brain. The rest of the brain tissue is the structural stroma that includes connective tissue such as the meninges, blood vessels, and ducts. The two main types of cells in the brain are neurons, also known as nerve cells, and glial cells, also known as neuroglia. [1]
Progenitor ependymal cells are monociliated but they differentiate into multiciliated ependymal cells. [6] [7] Unlike the ependyma, the choroid plexus epithelial layer has tight junctions [8] between the cells on the side facing the ventricle (apical surface). These tight junctions prevent the majority of substances from crossing the cell layer ...
Related to its secretory function, the SCO is partially composed of ependymal cells. [1] [30] These ependymocytes are characterized by elongated cell bodies that contain secretory materials and are covered in cilia. [1] [30] The most prominent of these is the glycoprotein SCO-spondin. [31]
CSF is mostly produced by specialized ependymal cells in the choroid plexuses of the ventricles of the brain, and absorbed in the arachnoid granulations. It is also produced by ependymal cells in the lining of the ventricles. In humans, there is about 125 mL of CSF at any one time, and about 500 mL is generated every day.