Search results
Results From The WOW.Com Content Network
Depending on context, wave height may be defined in different ways: For a sine wave, the wave height H is twice the amplitude (i.e., the peak-to-peak amplitude): [1] =.; For a periodic wave, it is simply the difference between the maximum and minimum of the surface elevation z = η(x – c p t): [1] = {()} {()}, with c p the phase speed (or propagation speed) of the wave.
The Degree (D) value has an almost linear dependence on the square root of the average wave Height (H) above, i.e., +. Using linear regression on the table above, the coefficients can be calculated for the low Height values ( λ L = 2.3236 , β L = 1.2551 {\textstyle \lambda _{L}=2.3236,\beta _{L}=1.2551} ) and for the high Height values ( λ H ...
Significant wave height H m0, defined in the frequency domain, is used both for measured and forecasted wave variance spectra.Most easily, it is defined in terms of the variance m 0 or standard deviation σ η of the surface elevation: [6] = =, where m 0, the zeroth-moment of the variance spectrum, is obtained by integration of the variance spectrum.
Hull speed or displacement speed is the speed at which the wavelength of a vessel's bow wave is equal to the waterline length of the vessel. As boat speed increases from rest, the wavelength of the bow wave increases, and usually its crest-to-trough dimension (height) increases as well. When hull speed is exceeded, a vessel in displacement mode ...
The significant wave height H 1/3 — the mean wave height of the highest third of the waves. The mean wave period, T 1. In addition to the short-term wave statistics presented above, long-term sea state statistics are often given as a joint frequency table of the significant wave height and the mean wave period.
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
A wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength. [21] [22] An example is shown in the figure. In general, the envelope of the wave packet moves at a speed different from the constituent waves. [23]