When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide ...

  3. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    The sequence () is decreasing and has positive terms. In fact, for all : >, because it is an integral of a non-negative continuous function which is not identically zero; + = ⁡ + ⁡ = (⁡) (⁡) >, again because the last integral is of a non-negative continuous function.

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  5. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  6. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    The incomplete elliptic integral of the first kind F is defined as (,) = = (⁡;) = ⁡.This is Legendre's trigonometric form of the elliptic integral; substituting t = sin θ and x = sin φ, one obtains Jacobi's algebraic form:

  7. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Lebesgue greatly improved measure theory, and introduced his own theory of integration, now known as Lebesgue integration, which proved to be a big improvement over Riemann's. Hilbert introduced Hilbert spaces to solve integral equations. The idea of normed vector space was in the air, and in the 1920s Banach created functional analysis.

  8. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  9. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .